Renoprotective Effect of Human Umbilical Cord–Derived Mesenchymal Stem Cells in Immunodeficient Mice Suffering from Acute Kidney Injury
نویسندگان
چکیده
It is unknown whether human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) can improve the renal function of patients suffering from acute kidney injury. Moreover, before beginning clinical trials, it is necessary to investigate this renoprotective effect of hUC-MSCs in a xenogeneic model of acute kidney injury. However, no previous studies have examined the application of hUC-MSCs to immunodeficient mice suffering from acute kidney injury. The objectives of this study were to examine whether hUC-MSCs could improve renal function in nonobese diabetic-severe combined immune deficiency (NOD-SCID) mice suffering from acute kidney injury, and to investigate the mechanism(s) for hUC-MSCs to improve renal function in this xenogeneic model. Early (3 hr) and late (12 hr) administrations of hUC-MSCs (10(6) cells) were performed via the external jugular vein into NOD-SCID mice suffering from either folic acid (FA) (250 mg/kg body weight) or vehicle. The results showed that early administration of hUC-MSCs improved the renal function of NOD-SCID mice suffering from FA-induced acute kidney injury, as evidenced by decreased serum urea nitrogen and serum creatinine levels, as well as a reduced tubular injury score. The beneficial effects of hUC-MSCs were through reducing apoptosis and promoting proliferation of renal tubular cells. These benefits were independent of inflammatory cytokine effects and transdifferentiation. Furthermore, this study is the first one to show that the reduced apoptosis of renal tubular cells by hUC-MSCs in this xenogeneic model is mediated through the mitochondrial pathway, and through the increase of Akt phosphorylation.
منابع مشابه
H2O2-Preconditioned Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Liver Regeneration in Acute Liver Failure-Induced Mice
Introduction: Mesenchymal stem cells (MSCs) are suitable candidates for the treatment of liver diseases. However, their low survival rate limits their efficacy following transplantation. This study aimed to evaluate the therapeutic potentials of H2O2-preconditioned umbilical cord-derived MSCs (UCMSCs) on acute liver failure (ALF) in mice. Methods: UCMSCs were pre-conditioned with different con...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملEnhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury
The therapeutic action of umbilical cord-derived mesenchymal stem cells (UC-MSCs) against acute kidney injury (AKI) has been demonstrated by several groups. However, how to further enhance the renoprotective effect of UC-MSCs and improve the therapy effect, are still unclear. In this study, we mainly investigated whether insulin-like growth factor-1 (IGF-1)-modified UC-MSCs hold an enhanced pro...
متن کاملP 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes
Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...
متن کاملEffect of preemptive treatment with human umbilical cord blood-derived mesenchymal stem cells on the development of renal ischemia-reperfusion injury in mice.
Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) have been studied in several models of immune-mediated disease because of their unique immunomodulatory properties. We hypothesized that HUCB-MSCs could suppress the inflammatory response in postischemic kidneys and attenuate early renal injury. In 8- to 10-wk-old male C57BL/6 mice, bilateral ischemia-reperfusion injury (IRI)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012